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Executive Summary 

The COVID-19 pandemic has affected travel behaviors and 

transportation system operations, and cities are grappling with 

what policies can be effective for a phased reopening shaped by 

social distancing. This edition of the white paper updates travel 

trends and highlights an agent-based simulation model’s results 

to predict the impact of proposed phased reopening strategies. 

It also introduces a real-time video processing method to 

measure social distancing through cameras on city streets.  

Key Findings 

• New York City (NYC) traffic volumes are starting to

increase, but average traffic speeds in the city remain high.

Despite the increased vehicular volumes, no significant

changes in average travel times were observed on NYC and

Seattle corridors in May, compared with Apr 2020.

• Data from May 2020 shows a smaller drop of the subway

ridership from 2019 levels compared to previous March

and April drops from 2019, but more data is needed to

verify the increase. Seattle’s public transit ridership

rebound continued to lag in May, indicating a lagging

mode choice preference for public modes of travel.

• Weigh-in-motion (WIM) from C2SMART’s testbed on the

Brooklyn-Queens Expressway (BQE) showed the number

of very heavy trucks (GVW > 100 kips) remain down 29%

for Queens bound (QB) and 44% for Staten Island bound

(SIB) traffic as of May 15 compare to Feb 2020.

• An agent-based simulation model (MATSim-NYC) was

used to predict how this pandemic is changing travel

behavior provide some insights for the reopening of NYC.

o Because of changed preferences, a full reopening

would perhaps only see as much as 73% of pre-

COVID transit ridership and an increase in the number

of car trips by as much as 142% of pre-pandemic

levels, assuming mode preferences held during the

crisis are maintained. Evidence from other cities

further in the reopening process points to lingering

mode choice preferences from the pandemic during

reopening, however due to the unique mode-choice in

NYC these numbers may represent an extreme case.

o The effect of applying a capacity restriction on public

transit, as is being applied in some cities, was also

studied. Limiting transit capacity to 50% would

decrease transit ridership to potentially as low as 64%

while increasing car trips to as much as 143% of pre-

pandemic levels by Phase 4 of NY’s reopening plan.

• A deep-learning based video-processing algorithm was

developed to measure social distancing using installed

cameras in cities.

o A gradual increase in pedestrian density has been

observed in multiple locations in NYC in the last two

weeks of May. It was observed that the average

percentage of pedestrians following social distancing

guidelines of 6 feet apart at select locations dropped

slightly from 91% on Apr 2 to 86% on May 27.

o At 5th Avenue and 42nd Street, while density

observed from cameras remained low, peak hour

spikes in car and pedestrian density began to emerge

in May. Meanwhile, cyclist density has almost

approached pre-pandemic levels at this location.

Mobility Trends 

Average subway ridership in NYC was down 75% and 

vehicular traffic via MTA bridges and tunnels was down 53% 

in the first two weeks of May, compared to the same weeks in 

2019. Although total volume remains low compared to 2019, 

recent data shows an increase in absolute volume. Using the 

week of Mar 30 to Apr 5 as a baseline (the period with the 

lowest observed traffic volume), a 52% average increase in 

vehicular traffic via MTA bridges and tunnels was observed in 

May. Average traffic speeds from 8AM to 6PM on north-south 

avenues between 34th and 57th Streets in Midtown Manhattan 

remained high (77% higher in May than in Feb 2020), and there 

was also a 73% increase in school zone speeding tickets from 

Apr 20 to May 17 as compared to Jan 1 to Mar 12 of 2020. As 

of May 15, Weigh-in-Motion (WIM) data from C2SMART’s 

testbed on the Brooklyn-Queens Expressway (BQE) shows that 

the number of very heavy trucks (GVW > 100 kips) remained 

down 29% for Queensbound (QB) and 44% for Staten Island-

bound (SIB) traffic, compared with Feb 2020. 
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Figure 1 Mobility Trends in NYC 

Seattle, WA saw a 35% increase in I-5 traffic volume in the 

week of May 25 compared with the week of Mar 30-Apr 5. 

However, despite a return of vehicular traffic volumes, public 

transit ridership continues to stay low (-79% in both Apr and 

May 2020 compared with 2019). Despite the increased 

vehicular volumes, no significant changes in average travel 

times were observed on the 495 Corridor in NYC or I-5 in 

Seattle in May compared with Apr 2020. 

Agent-based Simulation Model to Predict the Impact of 

COVID-19 Reopening Strategies 

Well-calibrated agent-based simulation models built in 

MATSim (1) were used to study the impact of COVID-19 on 

the NYC transportation system as well as potential policies for 

the reopening of NYC. Two baseline models were developed 

and calibrated: 1) A Pre-COVID model that simulates typical 

travel behavior, and 2) a COVID model that represents travel 

behavior during the first month of the COVID-19 pandemic. 

C2SMART researchers developed the Pre-COVID model 

called MATSim-NYC (3,5), using a synthetic population of 

more than 8 million New Yorkers and calibrated transit 

schedules (4). This open-source, large-scale transportation 

model covers the entire NYC area and integrates data and 

modeling capabilities for new technologies and modes. The 

calibrated models are being used to study: 

• Scenarios of multiple reopening phases

• Mode and system usage for various reopening

policies and social distancing strategies

• Emissions and air quality impacts

Pre-COVID Model 

Synthetic Population Data 

The American Community Survey, 2016 Longitudinal 

Employer-Household Dynamics, and 2040 Socioeconomic and 

Demographic Forecasts were used to generate personal and 

household attributes of the synthetic population. The 2010/2011 

Regional Household Travel Survey (RHTS) data was employed 

to prepare travel agendas and model mode choice. To 

incorporate emerging modes (bike-sharing and ride-hailing), 

2016 trip count data of Citi Bike and For-Hire-Vehicles (FHV) 

were also adopted. The 2017 Citywide Mobility Survey data 

was used to validate the city-level mode share of the synthetic 

population.  

Mode Choice Model 

Using travel survey data from the 2010/2011 RHTS from the 

New York Metropolitan Transportation Council (NYMTC), a 

mode choice model was proposed to determine mode choice at 

the tour level in the Pre-COVID model. In addition, the model 

also incorporated alternatives for emerging mobility services 

like bike-sharing (e.g., Citi Bike) and ride-hailing (e.g., 

Uber/Lyft) using observed trip data. Since the default MATSim 

only supports Multinomial Logit (MNL) model for mode 

choice, the nested logit model was adjusted to an equivalent 

trip-level MNL model.   

MATSim Model Network 

The input network was developed with a road network 

transformed from Open Street Map (OSM) data and a transit 

network and schedule generated from General Transit Feed 

Specification (GTFS) data (8,9). For details on model 

calibration, please see He et al. (4). The network is shown in 

Figure 2, the layer in green shows the distribution of transit 

stations.  

Figure 2 The road network and transit stations (green) 

COVID Model 

The MATSim-NYC model was then adapted and re-fitted to 

data collected during the pandemic to produce a MATSim-

NYC-COVID model. 

MTA Turnstile Data and Apple Mobility Trends Report 

Subway ridership and vehicular traffic data on Metropolitan 

Transportation Authority (MTA)’s facilities were used for the 

COVID model. Subway ridership rates of decline reached 89% 

on average from Mar 23 to Apr 19. This data was supplemented 

by the Apple Mobility Trends report (7) that reflects requests 

for directions in Apple Maps. According to Apple data from 

Mar 23 to Apr 19, trips by transit, driving, and walking 

decreased by 86%, 58%, and 76%, respectively. 
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Work from Home (WFH) Rate 

Determining the WFH rate was crucial in the COVID model 

development. The classification of working from home for all 

occupations, based on a study by Dingel and Neiman (2), was 

merged with this classification with travel demand from the 

Pre-COVID model based on occupational employment counts 

for NYC. A 44% WFH rate was calculated in the COVID 

model, which is very close to the result (42%) found by Dingel 

and Neiman (2). Figure 3 shows the percentage difference of 

number of agents generated before/after COVID-19; the result 

is aggregated by travelers’ home Traffic Analysis Zone (TAZ). 

Figure 3 The difference of number of agents generated 

before/after COVID-19 based on traveler’s home TAZ 

The COVID model requires recalibrating the mode choice 

model to fit the new behavioral setting. The alternative-specific 

constants for car, transit, walk, and bike were perturbed from 

the pre-pandemic base model to fit the MTA subway data and 

Apple Mobility Trends data (6,7). Figure 4 shows the changes 

of mode share in the Pre-COVID model and in the COVID 

model. Compared to the Pre-COVID period, the mode share of 

transit has decreased by 19 percentage points, the mode share 

of car has increased by 6 percentage points. While these may be 

considered as extreme-bounded conditions, they reflect general 

attitudes around contact risk in shared use modes. 

Figure 4  Changes of mode share in the Pre-COVID model 

and in the COVID model 

The simulation results show trip reductions during the 

pandemic for subway, car, and walking of 94%, 76%, and 68%, 

respectively. The average difference between these results and 

data from MTA turnstile data and Apple mobility trends is 

about 9%.  

Analyzing Reopening Scenarios 

New York State is planning a four-phase reopening based on 

the regional guidelines (10). Based on these guidelines and the 

study on occupational work from home rates by study by Dingel 

and Neiman (2), the corresponding percentage of employees 

who will return to work was generated. For details on industry 

related results, please see He et al. (4). A key assumption in 

these simulation results is that mode preference during the 

reopening phases will mirror what was observed during the 

pandemic period due to behavioral inertia. In other words, the 

following two scenarios can be considered as worst-case for 

transit based on mode preference not changing from pandemic 

levels. This assumption might be very conservative and more 

sensitivity analysis with different assumptions will be tested in 

the future as more data is revealed. 

For the first two reopening phases, the transit schedule was 

assumed to be the same as it was during the COVID period 

(using the General Transit Feed Specification (GTFS) on Mar 

20, 2020). When simulating the last two reopening phases, the 

regular transit schedule (GTFS on Jan 20, 2020) was applied. 

The transit schedule from MTA is continuously changing and 

the model will be modified as new information is released. 

Scenario 1: Without Any Transit Capacity Restriction 

In this scenario, there is no transit capacity restriction, although 

people are assumed to maintain the same mode preference in 

the reopening phases as those during the COVID-19 period. 

Figure 5 shows the changes of mode share in scenario 1 during 

Pre-COVID period, COVID period and the four reopen phases. 

Compared with the Pre-COVID model, car mode share 

increased the most among all the modes tested in the model. 

The results in Figure 6 show that due to the behavioral inertia, 

a reopening that does not restrict transit capacity would still 

potentially only operate at 73% transit ridership from pre-

COVID while increasing car traffic to 142% level. In addition, 

both the number of walking and bike trips are expected to 

increase in Phase 4. The number of walking trips will be 101% 

of Pre-COVID levels and bike trips will be 104% of Pre-

COVID levels. The mode share in Phase 4 of scenario 1 is 

shown in Figure 7, showing that the mode share of transit 

decreased 9 percentage points compared to the pre-COVID 

period (35%), while the mode share of car increased by 12 

percentage points, which was 30% in the Pre-COVID model.  

Scenario 2: 50% Transit Capacity Restriction 

Transit agencies around the world are implementing strategies 

that limit the number of passengers on vehicles to keep riders 

and workers safe as restrictions on business activity and travel 

are lifted. For example, the subway system in Beijing, China, 

which has already been in the reopening stage, limits subway 

occupancy below 50% of maximum capacity (11). In New 

Jersey (NJ), NJ Transit trains and buses will operate at 50% 
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capacity as part of orders to maintain social distancing (12). 

Despite the losses in efficiency, this could be a feasible solution 

to reduce contact risk and encourage people to use transit.  

For Scenario 2, a 50% capacity restriction is applied to all 

transit vehicles. Again, mode preferences in the COVID-19 

period are maintained in the reopening assuming behavioral 

inertia. The results in Figure 6 show that by Phase 4 only 64% 

of Pre-COVID transit ridership is restored with the capacity 

constraint, compared to the 73% transit ridership restoration 

estimated in Scenario 1. The increase in the number of car trips 

is around the same in both scenarios (142% of the Pre-COVID 

model in Scenario 1 and 143% of the Pre-COVID model in 

Scenario 2). The increase of bike trips is more significant in 

scenario 2, which is 123% of Pre-COVID model compared to 

104% in scenario 1. This shows that with 50% transit capacity 

restriction, people may prefer to use bikes as an alternative of 

transit. The mode share in Phase 4 of scenario 2 is shown in 

Figure 7, the mode share of transit would decrease 12 

percentage points compared to the Pre-COVID period (35%), 

which is 3 percentage points lower than in Scenario 1. The 

mode share of car would increase 13 percentage points 

compared to the Pre-COVID period (30%), which is slightly 

higher than in Scenario 1.  

The open-source, modular nature of the MATSim Virtual 

Testbed has allowed C2SMART researchers to add timely new 

simulation extensions. Besides the effects of the pandemic and 

an ensuing recovery on transit use, air quality and emission 

impact estimation during the COVID-19 pandemic and 

reopening are being conducted in collaboration with CTECH 

lab at Cornell University. The current model will be 

continuously enhanced when more data becomes available.

Figure 5 Mode share prediction in the Pre-COVID 19 model, COVID model and Reopening phases (scenario 1) 

Figure 6 The trip ratio in the COVID model and Phase 4 in 

two simulation scenarios (with and without transit capacity 

restriction) compared to the Pre-COVID model 

Figure 7 The mode share comparison in the Pre-COVID 

model and Phase 4 in two simulation scenarios (with and 

without transit capacity restriction)  
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Sociability Indicators from Real-time Street Cameras 

According to the World Health Organization and the CDC, 

social distancing is currently the most effective way to slow the 

spread of COVID-19. Although social distancing orders are 

mandated, data on how people are responding to these policies 

is not widely available. Understanding the actual reduction in 

social contact is important to measuring the effectiveness of the 

policy, especially as the crisis begins to ease and volumes of 

people traveling within the city start to increase. The 

C2SMART research team developed a novel social-distancing 

dataset along from a video processing method based on deep 

learning for analyzing time-dependent, social-distancing, 

patterns at the local level in the COVID-19 pandemic and the 

subsequent recovery process. Object detection was applied to 

real-time traffic camera videos (13) at multiple key locations 

within NYC and Seattle to provide information about crowd 

density. One of the state-of-the-art algorithms, RetinaNet (14), 

and ResNet-50 (15) are used as the backbone network 

architecture. The model was pre-trained using the COCO 

dataset (16). The open-source platforms TensorFlow (17) are 

utilized as the machine learning library's support, along with 

OpenCV (18) for video processing. Figure 8 presents the video 

processing and data analysis process. 

To calculate the social distancing safety rate (number of 

pedestrian pairs > 6 feet proximity/total number of pedestrian 

pairs), the centroids of detected pedestrians are identified and 

the distance between the centroids are calculated. Next, the ratio 

of real height and pixel height (R-P ratio) are computed to 

project the real distance between people by assuming every 

person has the same height (1.70 meters/5.58 feet is used). 

Figure 8 Video processing and data analysis process 

Traffic-related objects (person, car, truck, bicycle, bus) and the 

total number of social distancing pairs less than 6 feet proximity 

are reported for each frame. Figure 9 presents an example of the 

video processing output around the Main Street and Roosevelt 

Avenue intersection in Flushing, Queens and the preliminary 

sociability metrics based on 7 key locations in NYC are 

summarized in Table 1. A gradual increase in pedestrian 

volumes is observed, especially in the last two weeks of May. 

Accordingly, the social distancing safety rate dropped slightly. 

The relationship between pedestrian density and social 

distancing safety rate is also examined and shown in Figure 10. 

(a) Object detection (blue lines highlight the pedestrian 

pairs whose distance is less than 6 feet) 

(b) Crowd density pie chart 

Figure 9 Example of video processing output (Main St and 

Roosevelt Avenue, Queens, NYC) 

The social distancing detection algorithm used in NYC was also 

implemented for a local street intersection (Broadway & E Pike 

St EW) in Seattle with a frame rate of 30 seconds. Results from 

May 18 and June 1 show a similar average and maximum 

pedestrian density. However, the pedestrian social distancing 

safety rate is reduced from 88% to 85%. More camera data will 

be collected and enlarge the coverage of social distancing safety 

detection. Additional locations and examples are available at 

c2smart.engineering.nyu.edu/covid-19-dashboard. 

Table 1 COVID-19 Sociability Metrics (NYC) 

NYC, NY Apr 2 May 13 May 27 

Average Peds Density 

(#/frame) 
2.6 2.9 3.5 

Maximum Peds Density 

(#/frame) 
20 24 19 

http://c2smart.engineering.nyu.edu/covid-19-dashboard
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Social Distancing Safety 

Rate 
91% 87% 86% 

Seattle, WA May 18 Jun 1 

Average Peds Density 

(#/frame) 
3.2 3.0 

Maximum Peds Density 

(#/frame) 
12 11 

Social Distancing Safety 

Rate 
88% 85% 

Figure 10 Pedestrian density and social distancing safety rate 

Temporal Density Distribution 

Based on the objective detection outputs from the cameras, 

temporal density distribution profiles are constructed for pre-

pandemic conditions to investigate potential temporal pattern 

changes. Figure 11 shows the 24-hour distributions for 

pedestrian, car, and cyclist density at 5th Avenue and 42nd 

Street, Manhattan, NYC. This location is typically a high-

density area and has an overall high and consistent pedestrian 

density through the day (Figure 11 (a) navy line) before the 

crisis. While car and pedestrian density remain low in Apr and 

May 2020 compared with pre-pandemic levels, the emergence 

of commuter spikes (morning and afternoon peak for 

pedestrians and morning peak for cars) was observed. One 

possible reason could be that most of the observed pedestrians 

are essential workers. Unlike pedestrian and car density, cyclist 

density has almost approached pre-pandemic level at this 

location by the end of May. 

(a) Pedestrian density distribution 

(b) Car density distribution 

(c) Cyclist density distribution 

Figure 11 Temporal Distributions of Pedestrian, Car and 

Cyclist Density (5 Ave/42 St, Manhattan) 

As an on-going effort, this approach will be extended to cover 

100 camera locations to continuously evaluate the changes in 

crowd density and social distancing practice between 

pedestrians. With cloud computing power, it is also possible to 

translate the findings to actionable operational items in near 

real-time to track the density trends during the reopening phases 

and further utilized for predictive analysis (e.g. future cycling 

rates), to assist developing effective strategies or to plan for 

potential future scenarios. 

Summary of Findings 

As NYC begins the first phase of reopening, many questions 

and challenges for transportation systems remain. C2SMART 

researchers recalibrated their simulation testbed to evaluate the 

impact of COVID-19 on travel behavior and estimate possible 

mode share changes for different reopening phases with the 

consideration of social distancing.  

In addition, crowd density and social distancing for pedestrians 

based on data obtained from publicly available camera feeds 

and using state-of-the-art video processing techniques can 

provide useful insights into pedestrian and cyclist volumes and 

their behavior in terms of maintaining social distance.   

This paper reflects the Center’s perspective as of June 11, 

2020 based on data collected in May 2020. C2SMART 

researchers are continuing to collect data and monitor both the 

mobility and sociability trends and regularly update findings 

after the reopening of the city. 

y = -0.049ln(x) + 0.9198
R² = 0.6683
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