Algorithms to Convert Basic Safety Messages into Traffic Measures

An NSF project named “study of driving volatility in connected and cooperative vehicle systems” aims at extracting driving volatility, characterized by hard acceleration/braking, jerky movements, sharp lane changes or turns, and abnormally high speeds in a connected vehicle environment. The objective of this project is to model computationally efficient algorithms for predicting driver actions and volatility using information about their prior behaviors combined with positions and motions obtained via wireless communications.

Understanding and Enabling Cooperative Driving in New York City: A Data-driven Approach

The NYCDOT Team (NYCDOT and C2SMART) will assist the USDOT in understanding and enabling Cooperative Driving for Advanced Connected Vehicles (CD for ACV) in New York City. In partnership with the USDOT, NYCDOT will identify an area in the CV Pilot site as a location to support Advanced Connected Vehicles (ACVs) to better understand the role of infrastructure in supporting and enabling connected driving in an urban environment.

NJDOT Bridge Resource Program

The primary mission of the Bridge Resource Program (BRP) is to provide ongoing engineering evaluation and research support to the New Jersey Department of Transportation’s (NJDOT) Division of Bridge Engineering and Infrastructure Management. Major Goals of BRP is to (1) Preserve the state’s Bridge and Structural Assets, (2) Optimize the overall condition of the state’s assets within available funding limits and (3) Assist in developing the policy and standard based on new technologies to ensure structures safety and preserve NJDOT’s structures.

Construction Management Software Tool to Enhance Coordination of Construction Projects City-Wide During Planning and Operation Phases

The main objective of this study is the assessment of the Construction Impact Analysis (CIA) and Work Zone Impact and Strategy Estimator (WISE) tools, and determination of the feasibility of their customization with respect to New York City Department of Transportation (NYCDOT) and New York State Department of Transportation (NYSDOT)’s needs and requirements, cost of adoption and modification, and related issues.

AASHTO (American Association of State Highway and Transportation Officials) and NBI (National Bridge Inventory) Element Deterioration Rates for Bridge Management System

The purpose of this study is to develop and implement an analytical framework to calculate deterioration rates for bridges and large culverts based AASHTO-Element inspection data as well as NBI data and demonstrate the application of the approach through currently available inspection data. This analytical approach will be applied to generate deterioration rates for NYS bridges based on, but not limited to climate and/or geographical location, DOT Region, bridge ownership, material types, design types, and bridge types. The outcome of the research will be further implemented in the AASHTO BrM and the Agile Assets Structures Manager and Bridge Analyst.

Emerging Leaders in Transportation

Led by NYU Rudin Center Assistant Director Sarah Kaufman, the Emerging Leaders in Transportation program develops early-career transportation professionals to develop and promote innovations within their organizations. The three-day program includes professional development with executive leaders, communication work through networking activities, and site visits to major transportation management locations.

Development of an Open Source Multi-Agent Virtual Simulation Test Bed for Evaluating Emerging Transportation Technologies and Policies

In previous years, the research team has developed and calibrated a base model implemented in MATSim and SUMO. This virtual testbed simulates an 8-million-person population and includes cars, trains, bus, bikeshare, taxi, and other for-hire vehicles calibrated to the year 2016. The team is building the architecture to host this virtual test bed and developing system design and user guide documentation.