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Executive Summary 

The advancement of new smart traffic sensing, mobile communication, and artificial intelligence 

technologies has greatly stimulated the growth of transportation data. A great deal of generated 

transportation data is playing an important role in modern smart transportation and smart city research 

and applications. The increase of computation power enabled by advanced hardware and the rise of 

artificial intelligence (AI) technologies, especially in the deep learning field, provides great opportunities 

to comprehensively utilize the transportation big data. When applying AI in the transportation area, 

transportation domain knowledge is beneficial for designing AI models and solving transportation 

problems in a smarter way. However, because most AI algorithms were not originally designed for 

transportation problems, using big data and AI technologies to solve transportation problems is facing 

challenges. Since key hyper-parameters are missed in some proposed AI models and the software and 

hardware adopted by various studies are different, many proposed AI-based methods can hardly be 

accurately re-implemented. Further, in most of the AI-based transportation research studies, there is no 

uniform dataset to evaluate the proposed models. Thus, to overcome the challenges mentioned earlier, 

this project seeks to build a transportation AI platform with widely accepted datasets, provide well-

established models, and use uniform training and testing procedures to assist the evaluation of emerging 

novel methodologies. Traffic forecasting involving high-dimensional spatiotemporal data is a good 

applicable scenario to utilize novel deep learning models to solve complicated transportation problems. 

Thus, in this project, the prototype platform mainly focuses on solving the traffic prediction problem. 

More specifically, the major contributions of this project include: 

• Develop a prototypical artificial intelligence platform for solving challenging transportation problems,

which require large-volume high-dimensional transportation data and complex models. This AI

platform is capable of providing standardized datasets and novel deep learning-based models for

specific problems.

• Design a novel architecture for the transportation AI platform to enhance the efficiency of the

transportation data processing, management, and communication and increase the computational

power of the platform.

• Design a data storage and management schema to manage multiple network-wide traffic data sets

for supporting the traffic prediction task and simplify the whole training and testing process.

• Develop multiple deep learning-based models for solving the network-wide traffic prediction

problem, which can be the baseline models to evaluate novel deep learning-based models.

The developed transportation AI platform is capable of evaluating the traffic prediction performance of 

various implemented models by comparing and visualizing the prediction results tested on multiple real-

world network-wide traffic state data sets. Future work will focus on increasing the computation capability 

of the platform and broadening the topics that the platform can deal with. 
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1. Introduction

1.1. Motivation 

1.1.1. Transportation Data Science 

The advancement of new smart traffic sensing, mobile communication, and artificial intelligence 

technologies has stimulated significant growth in the volume and variety of transportation data. A huge 

volume of newly generated transportation data is playing an important role in modern smart 

transportation and smart city research and applications. Although transportation data has great potential 

to enhance smart transportation applications in the development of smart cities, we are still facing 

challenges regarding how to fully and properly use these various massive transportation data sets. In 

recent years, new transportation sensing technologies have constantly emerged, which provide more 

options to transportation practitioners and researchers to collect necessary transportation data. The 

transportation data not only can be collected by traditional traffic sensors, but it can also be generated 

by transportation-related applications and tools, such as social media, cell phones, mobile apps, electric 

vehicles, cyclists, pedestrians, etc. Thus, due to the diversity and variety of transportation data, both 

transportation practitioners and researchers are facing substantial opportunities and challenges. 

Before the “big data” term was widely used, most of the previous transportation applications and studies 

were designed and conducted based on real data. However, real transportation problems are normally 

intricate and related to many unexpected influential factors. The sizes of the datasets used in previous 

studies are usually too small to reflect the real-world complexity of these problems. Meanwhile, many 

methodologies in the transportation field are built based on complicated mathematical models without 

comprehensive validation from real transportation datasets. Thus, biased models may be generated in 

the process of understanding the core of transportation problems. Since the term “big data” has become 

more commonly used, transportation data science, or the use of immense data sets to investigate 

transportation issues, has become a more prevalent approach to smart transportation research and 

development. The newly generated transportation data inherently has the core “5v” properties of big 

data, i.e. volume, velocity, variety, value, and veracity [1]. Thus, it is critical to find proper and practicable 

ways to comprehensively utilize it. 

In recent years, the increased computation power enabled by advanced hardware and the rise of artificial 

intelligence (AI) technologies, especially in the deep learning field, have provided great opportunities to 

comprehensively utilize transportation big data. AI technologies have been widely adopted for many 

applications requiring large datasets in multiple research and industrial fields, such as computer vision, 

natural language processing, and robotics. The complex deep neural network models with powerful non-

linear fitting capabilities can provide great power for dealing with complicated transportation problems 

that cannot be solved by classical methods. However, the deep learning-based models are normally highly 
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flexible, and thus, the designs of these models need to be customized depending on specific problems 

and datasets. For a specific problem, the design of a model structure will directly affect the model 

performance. In addition, although transportation is a proper scientific domain for developing and 

applying novel deep learning models, most of the existing deep learning models are not originally 

designed for transportation problems. Hence, developing novel or customized deep learning models for 

classical transportation problems is another challenge for transportation practitioners and researchers.  

To efficiently overcome these challenges, developing multiple deep learning models and comparing their 

performance by testing on existing standard datasets can stimulate the emergence of new methodologies. 

With this idea, this project aims to build a platform with standard procedures to train and test different 

deep learning models to solve various transportation-related problems. The testing results can be easily 

compared to assist in selecting the more effective models for further studies or implementations.  

1.1.2. Transportation AI Applications 

Artificial intelligence (AI) refers to a broad field in computer science that enables machines to think and 

act like human brains [2]. With increasing populations, vehicles, and mobility demands, improving the 

safety, efficiency, and sustainability of the transportation system is becoming an urgent task for 

transportation practitioners and researchers. With the recent development of accelerated computation 

power, big data, and machine learning algorithms, various AI methods have achieved state-of-art 

performance in speech recognition, visual object recognition, object detection, and many other domains. 

When applying AI in the transportation domain, transportation domain knowledge is beneficial for 

designing AI models and solving transportation problems in a smarter way. Because traffic congestion 

detection and prediction requires taking network traffic states into consideration, traffic prediction using 

a huge volume of historical traffic state data is a great field for applying novel AI algorithms. In this project, 

we focus on using AI technologies to solve the traffic prediction problem, including developing and 

evaluating AI-based models, via a data-driven transportation AI platform.  

Since urban traffic flow is complex and constantly changing, it is difficult for travelers to acquire 

information describing current and estimated future traffic conditions for various roadway facilities. As a 

result, congestion prediction was proposed to support transportation agencies and help them establish 

effective traffic management measures, as well as aid road users in their adoption of smarter trip 

strategies, including route and departure time selection [3]. Ultimately, there are two major challenges in 

urban traffic congestion detection and prediction: (1) How to estimate and predict traffic state in large-

scale urban areas? (2) How to improve the accuracy, instantaneous nature, and stability of traffic 

congestion detection and prediction? 

With the advancement of data collection technologies, transportation data has become more and more 

ubiquitous. This triggered a series of data-driven research projects to investigate transportation 
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phenomena. Some recent studies have proposed data-driven methods for traffic congestion detection 

and prediction. Several traffic congestion prediction methods have also been developed, such as adaptive 

data-driven real-time congestion prediction [3], traffic flow prediction using floating car trajectory data 

[4], Bayesian network analysis [5], deep learning theory [6], data mining based approaches (integration of 

K-means clustering, decision trees, and neural networks) [7], hierarchical fuzzy rule-based systems 

optimized with genetic algorithms [8], etc. These existing studies have made significant contributions to 

the development of methodologies and technologies for traffic congestion detection and prediction, but 

with the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT) technologies, 

new challenges and opportunities are continuously emerging with higher requirements for metrics such 

as detection and prediction accuracy, real-time results, and stability. 

Recently, artificial intelligence (AI) has been considered one of the most promising techniques to tackle 

tremendously high-dimensional data analysis tasks. AI technologies have been applied for transportation 

analysis applications such as traffic signal control, autonomous driving, pedestrian crossing detection, 

travel time prediction, short term traffic volume prediction, and car ownership determinants [9]. Although 

the applications of AI technologies are still in the early stage in the transportation area, deep learning-

based traffic prediction is becoming a fairly popular research field. In this project, multiple novel deep 

learning-based traffic prediction models are implemented and evaluated to enhance the development of 

new algorithms. 

1.1.3. Transportation AI Platforms 

Even though transportation data has been broadly collected and archived, data accessibility and usability 

are unsatisfactory [10]. AI-based traffic prediction requiring immense historical traffic state data is facing 

several challenges, including 1) there are no uniform datasets to evaluate the new proposed models and 

2) most of the proposed models can hardly be re-implemented because key hyper-parameters are missing

and different software and hardware are used by various studies.  To solve these problems, this project 

seeks to build a transportation AI platform with standard datasets and provide well-established models 

to assist in evaluating emerging novel methods. 

Since various transportation datasets are stored separately and managed independently by different 

agencies, extensive communication, data formatting, and data integration efforts are required to make 

the data accessible and interpretable to the users. Therefore, a large number of transportation data 

storing, analysis, and visualization platforms and advanced traveler information systems have been 

developed in attempts to overcome such barriers. The PI’s research team has already established an 

online transportation platform, named the Digital Roadway Interactive Visualization and Evaluation 

Network (DRIVE Net) [10][11], whose development is funded by Washington State Department of 

Transportation (WSDOT). DRIVE Net can be used for sharing, integration, visualization, and analysis of 

transportation-related data. This project aims to extend the functions of DRIVE Net by developing an AI-
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based platform for network-wide congestion detection and prediction using multi-source data. The 

designed AI platform incorporates novel deep learning models to support network-wide analysis for 

identifying solutions for traffic forecasting. Compared to existing transportation data analysis platforms, 

the transportation AI platform has superior computational capability and flexibility. The new AI platform 

will provide more convenient and efficient traffic analysis tools for transportation agencies, researchers, 

and practitioners. 

1.2. Objective 

Artificial intelligence and immense transportation data offer the potential to significantly improve the 

efficiency and robustness of solving modern transportation problems. Traffic forecasting requiring high-

dimensional spatiotemporal data is an appropriate scenario to utilize novel deep learning models. The 

goal of this project is to develop an AI-based transportation platform to stimulate and enhance the design 

of novel transportation-oriented deep learning algorithms. The transportation AI platform can provide 

standard network-wide traffic state datasets and implement existing state-of-the-art algorithms as the 

baselines to evaluate the novel algorithms.  

In particular, we aim to achieve the following research objectives: 

1. Develop an artificial intelligence platform for solving challenging transportation problems that require

large-volume high-dimensional transportation data and complex models. This AI platform is capable

of providing standardized datasets and novel deep learning-based models for specific problems. In

this project, the prototype platform mainly focuses on solving the traffic prediction problem.

2. Design a novel architecture for the transportation AI platform to enhance the efficiency of

transportation data processing, management, and communication and increase the computational

power of the platform.

3. Design a data storage and management schema to manage multiple network-wide traffic data sets

for supporting the traffic prediction task and simplifying the model’s training and testing process.

4. Develop multiple deep learning-based models for solving the network-wide traffic prediction

problem, which can be the baseline models to evaluate novel deep learning-based models.

5. Develop a transportation AI platform capable of evaluating the traffic prediction performance of

various implemented models by comparing and visualizing the prediction results tested on multiple

real-world network-wide traffic state data sets.

2. Literature Review

Data science is a set of fundamental principles that support and guide the principled extraction of 

information and knowledge from data [12]. The core task of data science is to extract knowledge from 

data via technologies that incorporate these principles. Accordingly, transportation data science can be 
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realized by applying the fundamental principles of data science in the transportation field. Specifically, 

transportation data science can be defined as the computationally intensive investigation of 

transportation issues using immense data sets. Artificial intelligence, especially deep learning methods, 

applied to the analysis of emerging transportation datasets, has brought new power to the transportation 

research field. To adequately bring the power of AI to the transportation fields, this project aims to build 

a transportation AI platform to stimulate and enhance the design of novel transportation-oriented deep 

learning algorithms. In this section, a number of AI-based transportation applications and platforms are 

introduced. As a typical complicated transportation problem, traffic prediction studies that can 

comprehensively incorporate deep learning methods are also introduced. 

2.1. Artificial Intelligence Applied in Transportation 

Artificial intelligence (AI) has the potential to solve problems that are hard for traditional methods to 

address, and various AI methods have achieved state-of-the-art performances in speech recognition, 

visual object recognition, object detection and many other domains [13]. Some AI-based methods even 

surpass human-level performance on some specific problems [14]. With increasing population, vehicles, 

and mobility demands, improving the safety, efficiency, and sustainability of the transportation system 

remains a challenge, and traditional methods may not be able to fully address it. To overcome these issues, 

an increasing amount of studies have been conducted to apply AI-based methods to solve complicated 

transportation problems including traffic signal control, traffic prediction, microscopic traffic modeling, 

and autonomous driving. In this section, a brief review of recent studies that utilize AI-based methods is 

presented. 

For traffic signal control, reinforcement learning (RL), as a significant branch of deep learning methods, 

has been adequately studied and widely applied in recent years. Abdulhai et al. [15] proposed a Q-learning 

based traffic signal control method for an isolated traffic intersection with variable traffic demands. Arel 

et al. [16] proposed a traffic signal control policy based on multi-agent RL. A five-intersection traffic 

network was studied and each intersection was controlled by an RL agent. By combining deep neural 

network and RL, Li et al. [17] used a deep RL method for traffic signal control and claimed that it 

outperforms conventional traffic control methods. Leveraging large-scale real-world traffic data from 

surveillance cameras, Wei et al. [18] built a deep Q-learning model for signal controlling with 24 traffic 

intersections.  

Microscopic traffic models including car-following and lane-changing models are the fundamental parts 

of transportation research. Recently, many emerging deep learning-based technologies have been applied 

to microscopic traffic modeling. Wang et al. [19] proposed a data-driven car-following model based on 

the gated recurrent unit (GRU) neural networks, followed by Zhou et al. [20] who used a general recurrent 

neural network (RNN)  for car following modeling. Zhu et al. [21] built a deep RL based car-following model 

using the deep deterministic policy gradient (DDPG) algorithm. Further, the convolution neural network 
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(CNN) was also used for lane change intention prediction [22]. In addition, a deep RL model was proposed 

for high-level lane-changing decision making [23].  

For autonomous driving perception, several CNN-based deep learning methods, such as YOLO [24], Faster 

R-CNN [25], and Mask R-CNN [26], have been the most widely used for object detection and recognition 

in 2D camera images. For 3D object detection with Lidar data, Chen et al. [27] proposed a multi-view 3D 

network that predicts orientated 3D bounding boxes base on Lidar point cloud and RGB images. Zhou and 

Tuzel [28] developed a generic 3D object detection network called VoxelNet that combines feature 

extraction and bounding box prediction into a single stage network. For autonomous driving decision 

making, CNN and RL approaches have been studied. Bojarski et al. [29] developed an end-to-end learning 

approach that uses CNN to predict steering commands directly from front camera image pixels. By 

integrating a fully-convolutional network (FCN) and a long short-term memory (LSTM) network, predicting 

discrete and continuous driving behaviors from a large-scale driving video dataset is fulfilled [30]. 

Moreover, Kendall et al. [31] demonstrated that using deep RL methods for autonomous driving in real-

world situations is possible, where the vehicle can learn to drive on real roads in a single day. 

2.2. Existing Transportation Data/AI Platforms 

Well-designed platforms or systems are capable of properly utilizing the existing immense transportation 

data sets and AI methods. In this section, a brief review of existing transportation data/AI platforms for 

typical transportation problems, including traffic signal control, traffic congestion detection, and 

autonomous driving, is presented. 

For traffic signal control, IBM has been granted a patent - titled " Cognitive traffic signal control " - for a 

real-time traffic management system powered by AI [32]. The patent describes a traffic management 

system where a computer receives a streaming video for one or more paths of traffic and pedestrians at 

an intersection. Based on the analysis of the real-time flow of traffic, the computer processor(s) would 

then determine the best way to manage the traffic signals. For real-time traffic signal control, an 

innovative approach, Surtrac [33], is proposed by combining artificial intelligence methods with traffic 

theory. The Surtrac is capable of optimizing traffic signals to control the traffic flow on both urban grids 

and corridors, leading to less waiting time, reduced congestion, shorter trips, and less pollution. Further, 

the DeepDrive platform[34] is developed to provide adaptive traffic signal control based on deep 

reinforcement learning. 

For traffic congestion detection and traffic prediction, PTV Optima [35] can generate traffic prediction 

information for up to 60 minutes in the future. Traffic congestion can be detected by the speed and traffic 

flow detected in the field or calculated from roadway traffic states data (e.g., floating car and license plate 

identification data). The detected traffic congestion has spatiotemporal impacts on the surrounding 

traffic. PTV Optima's model-based approach enables the analysis based on special features, such as 
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unpredictable events and traffic accidents. The Miovision TrafficLink platform [36] is developed to assist 

traffic engineers to create more responsive and efficient traffic networks. TIMON [37] is a European 

research project, whose main objective is to provide real-time services through a web-based platform and 

a mobile application for drivers. To provide these services, one of the core technologies developed inside 

TIMON is the design and development of AI techniques for traffic prediction and route planning. Microsoft 

research team pioneered the use of machine learning methods to build predictive models for traffic [38]. 

The developed models can infer and predict traffic flow at different time periods in the future based on 

the analysis of large amounts of data over months and years. For fulfilling the predictive insights and 

proactive traffic management optimization, Waycare [39] is shaping the future of city mobility by enabling 

cities to take full control of their roads by harnessing in-vehicle information and municipal traffic data. 

Aimsun [40] is a leader in traffic prediction software and services. Aimsun has fully integrated software 

packages to complement the ITS portfolio by simulating future traffic flows to aid offline strategic 

transportation planning and real-time mobility management. In addition, a transportation data storage, 

management, and visualization platform, named Digital Roadway Interactive Visualization and Evaluation 

Network (DRIVE Net), was developed to enable large-scale online data sharing, visualization, modeling 

and analysis [10]. In addition to those mentioned above, The UrbanLogiq platform [41] aggregates diverse 

data sets such as traffic counts, weather, infrastructure, mobile, and accidents so that cites can 

understand movement and congestion. Moreover, companies providing mobility services and map-based 

navigation services, such as Alibaba, Baidu, and Didi Chuxing, have all come up with artificial intelligence 

solutions that bring data from government and other partners to develop a city traffic management 

powered by AI and cloud technology [42]. For example, the Didi Chuxing company announced the full 

opening of AI technology, services, computing power and diversified accumulated solutions by releasing 

an open platform “Qunan” [43]. 

In the autonomous driving field, there are a variety of technical paths for autopilot, such as camera-based 

solutions (Tesla, AutoX), LIDAR-based solutions (Waymo, Baidu), and multi-sensor deep integration 

solutions (Drive.ai, Zoox). Drive.ai [44] uses artificial intelligence to create self-driving transportation 

solutions that improve the state of mobility today. NVIDIA also invests heavily in the NVIDIA DRIVE PX 

autopilot development platform [45]. Combined with deep learning, sensor fusion, and vision 

technologies, the environmental changes around the vehicle can be recognized in real time and the 

vehicle can accurately locate itself on a high-definition map or even plan a safe route ahead. Tesla is 

developing a new generation of autonomous driving hardware that includes an artificial intelligence 

processor-Autopilot [46]. Waymo [47] announced that the company began testing autonomous vehicles 

without a safety driver in the driver's seat and carried passengers in Phoenix. Baidu Apollo system is the 

world's first and most comprehensive intelligent driving commercial solution [48]. Comma.ai [49] has 

launched an open source project called Openpilot, which includes a complete set of accessibility programs 

for unmanned cars.  
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2.3. Existing Deep Learning-based Traffic Forecasting 

To demonstrate the computation capability of the transportation AI platform, a training and testing 

procedure for traffic prediction models is developed. Numerous traffic state/congestion prediction 

methods have also been developed such as adaptive data-driven real-time congestion prediction [3], 

traffic flow prediction using floating car trajectory data [4], Bayesian network analysis [5], deep learning 

theory [6], data mining based approaches (integration of K-means clustering, decision trees, and neural 

networks) [7], hierarchical fuzzy rule-based systems optimized with genetic algorithms [8], etc. 

However, to summarize the previous research on traffic prediction, those existing models are roughly 

classified into two categories: statistical methods and machine learning models [50][51][52][53]. Most of 

the statistical methods for traffic forecasting were developed to deal with traffic roadways with less 

complex network structures. Meanwhile, the transportation datasets used in those statistical methods 

were relatively small in size. Thus, the capability of such statistical methods to handle high-dimensional 

and dynamic time series data is quite limited. With the development of data mining and knowledge 

discovery, much recent work on this topic focuses on machine learning methods for traffic forecasting.  

Because machine learning methods are normally capable of capturing complex non-linear relationships in 

high-dimensional data, many machine learning-based methods, like support vector regression (SVR) [54], 

tend to outperform the statistical methods, such as autoregressive integrated moving average (ARIMA) 

[55] and its many variants [56]. However, the potential of artificial intelligence approaches to handle

complex traffic forecasting problems was not fully investigated until recent years. Following early works 

[50][57] applying NNs to the traffic prediction problem, deep learning models have shown their superior 

abilities to capture nonlinear spatiotemporal effects for traffic forecasting [58].  

Deep learning based-models turn out to be very effective for solving complex traffic forecasting problems. 

Since a preliminary study [59] utilized the feed-forward NN to estimate vehicle travel time, many NN-

based models, including fuzzy NN [60], recurrent NN [57], convolution NN [53][61], deep belief networks 

[62][63], auto-encoders [64][65], generative adversarial networks [66][67], and combinations of these 

models have been applied to forecast traffic states. Because traffic state datasets are mostly made up of 

spatiotemporal data, the recurrent NN with the capability of capturing temporal dependencies and its 

variants, such as LSTM [68] and GRU [69], were widely used as a component of a traffic forecasting model 

to forecast traffic speed [56], travel time [70], and traffic flow [71]. These existing studies have made 

significant contributions to the development of the methodologies and technologies for traffic congestion 

detection and prediction, but with the development of Intelligent Transportation Systems (ITS), new 

challenges and opportunities are continuously emerging with higher requirements for metrics such as 

detection and prediction accuracy, real-time results, and stability. 
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3. Architecture

The artificial intelligence-based platform is designed to solve multiple cutting-edge transportation 

problems, and thus, it should have the ability to support hosting multiple types of models and datasets to 

solve multiple tasks. In this project, a task incorporated by the transportation AI platform refers to a 

specific transportation problem, such as traffic forecasting, data imputation, and vehicle detection, whose 

performance can be quantitatively evaluated by well-established metrics. For example, given a standard 

dataset, the traffic forecasting problems can be evaluated by accuracy or robustness-related metrics. 

Although this project mainly focuses on the network-wide traffic forecasting problem, the flexible storage 

and management of models and dataset are taken into consideration when the architecture of the 

transportation AI platform is designed and developed. 

3.1. Platform Architecture 

The transportation AI platform is built based on transportation-related datasets, and thus there should be 

a data management system to store, query, process, and manage all the datasets to make the modeling 

process efficient. Because the artificial intelligence methods are mostly neural network-based models and 

the training and testing of neural networks are quite time-consuming, a computer or a cluster, or even a 

cloud with the power of conducting multiple training and testing tasks, should be incorporated as a main 

component of the transportation AI platform. In addition, to let the users conveniently and interactively 

manipulate the models and datasets on the platform, the platform should also have a user-friendly 

interface. Thus, to fulfill the aforementioned requirements, the transportation AI platform mainly 

contains three main components, i.e. a data warehouse, a web server, and a computation center, as 

shown in Figure 1. All three components are connected and the communications between those 

components are mainly data transmission. The data warehouse hosting multiple types of databases can 

manage and provide datasets for solving transportation problems. The computation center uses 

computers or the cloud which contains multiple graphics processing units (GPUs) capable of efficiently 

training and testing deep learning models. The web server hosts a website that allows users to access the 
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developed transportation AI platform remotely and help manage user accounts and training and testing 

tasks.  

Traffic Practitioners

Researchers

Computation Center

Public Users

Web Server

Data Warehouse

Wi-Fi & Bluetooth Loop Detector Vehicle Images Weather Final Results
Intermediate 

Results

 HTML  

 HTML  

 HTML  Manage GPU Computational Sources

CPU Computational Sources

Manage

Data

Data

Data

Platform

Figure 1 : Architecture of the Transportation AI Platform 

A detailed description of all three components is included in the following subsections. The data 

transmission between those components are also introduced. 

3.2. Data Management and Database Design 

The data warehouse is capable of hosting multiple types of data, as shown in Figure 1, including tabular 

data, image data, and structured data. The traffic state data, mainly collected from loop detector sensors 

and other types of traffic sensors, are mostly stored in relational databases in the tabular format. The 
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image or video data normally should be traffic monitoring data for solving problems, such as traffic flow 

counting or traffic detection. The data describing the traffic network’s physical or topological structures 

are normally stored using various types of databases or files, depending on the types of tasks that need 

to be solved. Basically, the aforementioned data is used for training and testing models to solve specific 

transportation problems. However, when a model is trained or tested on the platform, many types of 

metadata and result data are generated and should also be stored.  

For a specific task, the data used for the training and testing process should be identical when different 

users attempt to adjust hyper-parameters or conduct the training/testing process multiple times. Hence, 

in this project, the formats of the datasets used for training/testing models are fixed and those datasets 

are stored as files that can be read using the same data loading procedure. As the training/testing 

processes are conducted in the computation center, to reduce data communication and efficiently load 

data to the models, all the well-processed training and testing data are stored as files in the computation 

center. However, since different users may conduct different tasks and the results of these tasks will be 

reused and visualized by the transportation AI platform, the query process of these result data should be 

convenient and flexible. Hence, the task information and task result data are stored in the database in the 

data warehouse side. 

Figure 2 shows the database schema of the task-related tables on the transportation AI platform. The 

tables are as followings: 

• Users: stores the information of each user of the platform. The primary key is UserID (id).

• Goals: stores all the specific task (goal), including traffic prediction, vehicle detection, etc. The

primary key is goalID.

• Datasets: stores the detailed information of all datasets and the path to locate the dataset files.

The primary is datasetID.

• Models: stores the detailed information of all models. The primary key is modelID.

• TrainingTask: stores the detailed information of historical training tasks, consisting of userID,

goalID, datasetID, modelID, and some other parameters. The primary key is TrainingTaskID.

• Training Result: stores the results of each historical training tasks, consisting of training loss,

validation loss, and timestamp. The primary key is the combination of TrainingTaskID and Epoch.

• GPU: stores the detailed information of GPUs in the computation center. The primary key is

GPUID.
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Figure 2 : Database design of main tables which are used for storing, training, and testing 

process information 

Given the main detailed information of these tables, the relationship between them, i.e. the database 

schema, is briefly shown in Figure 3. The TrainingTask is the core entity that connects the User, Goal, 

Model, and Dataset entities. The intermediate training results are stored in the TrainingResult table. The 

trained model is saved as a file name by the TrainingTaskID and stored in the computation center. With 

the help of the stored paths in the dataset table, the datasets can be easily located in the computation 

center. 
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Figure 3 : A brief introduction of the database schema for the transportation AI platform 

tasks 

3.3. Computation Center 

The computation center has the ability to receive task requests from the web server and execute the 

specific task. The task results will be sent to the data warehouse to be permanently stored. Since multiple 

users may use the platform at the same time, multiple task requests may arrive at the computation center 

at the same time or in a short period of time. It is necessary for the computation center to be able to 

manage all the received tasks and execute those tasks in a reasonable order based on the amount of 

computation resources the computation center has. To reasonably manage all the received tasks, the 

computation center is built based on several important components, including a task manager, a thread 

manager, a dataset pool, a model pool, and a computation resource pool, as shown in Figure 4. 
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Figure 4 : Structure of the computation center 

The task manager is the core component of the computation center, which consists of a request receiver, 

a task parser, a task queue, and a task dispatcher. The request receiver acts as a server that monitors all 

the task requests via the http request technologies. When a task request is received, the encoded context 

of the task request will be decoded by the task parser. After the task content is successfully decoded 

without errors, the task request will be input into a task queue, which will attempt to first launch the 

earliest-arrived task request. The main reason to add a task queue in the task manager is that when the 

number of requested tasks is larger than the amount of available GPUs on the platform, the task requests 

that arrived last need to be stored in the task queue. When a GPU is available to be used to train or test 

deep learning models, the first task will be removed from the task queue and passed to the task dispatcher. 

The task dispatcher will input the task content to the thread manager to execute the task by creating a 

new thread. 

The thread manager manages the threads to optimize the distribution of computation resources among 

the tasks. The thread manager contains a thread pool, thread counter, thread launcher, and a thread 

tracker. The thread manager has a maximum amount of threads in the thread pool and the thread counter 

is used to count how many threads are operating. The maximum number of threads is based on the 
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amount of available computation resources. After a thread is created, the thread launcher will start to 

load the correct dataset and the correct model from the dataset pool and the model pool, respectively, 

to execute the task. When the thread is created, the thread launcher will also assign a GPU from the 

computation resource pool to the task. The dataset will be loaded to the memory and the model will be 

initialized in the assigned GPU to start the training process. At the same time, the thread tracker will 

monitor the GPU’s status to help dispatch tasks.  

While the task is executing, the intermediate results and final outputs will be sent back to and stored in 

the data warehouse. In the end, via the thread manager and the task manager, the status of the 

computation resource pool will be updated to assist with the arrangement of upcoming tasks.  

3.4. Web Server 

The web server is the interface that connects the platform and users. Most web applications are designed 

based on the Model-View-Controller (MVC) framework. The architecture of the transportation AI platform 

is also similar to the MVC framework which contains the view, controller and models. However, since the 

transportation AI platform has the computation center, the web server can be simplified as the 

computation center is responsible for the modeling and computation jobs. Thus, the web server mainly 

serves for the view and controller parts.  

The UI of the transportation AI platform is designed to be simple and clear. Thus, the whole UI of the 

platform is designed as a system administration console providing all the required functions directly on 

the web page. The logical level of the transportation AI platform is controlled based on the procedure for 

efficiently and easily creating a new task on the platform. The procedure for creating new tasks is 

introduced in detail in the following section.  

3.5. New Task Procedure 

Based on the introduced data warehouse, computation center, and web server, the procedure for starting 

a new task is introduced in this section. The transportation AI platform mainly provides two types of tasks. 

One is starting a new training task and the other is checking the historical training results. Figure 5 displays 

the creating new task procedures. When the users, including traffic practitioners, researcher and public 

users, create a new task, the web server will let the users select one of the task types supported by the 

transportation AI platform. Based on the selected task, the platform UI will let the users select the dataset 

hosted in the computation center. Although the datasets are stored in the computation center to reduce 

the data communication between the data warehouse and the computation center, the descriptions of 

those datasets are stored in the database. Thus, during the data selection process, the data selection 

module needs to request data from the data warehouse. Then, the users will come to the model selection 

and parameter configuration module, during which this module still needs to query descriptive data from 
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the database. After that, the information for creating a new task is completed and will be sent to the 

computation center to start the new task. 
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Data Description
& Data Selection
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& Parameter 
Configuration

Computation Center
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and Testing Results)
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Figure 5 : Creating new task procedures 

The other type of task is historical or real-time task result examination. During this process, the web server 

does not need to request any data from the computation center because all the intermediate and final 

results are stored in the data warehouse. The task result examination process mainly provides result 

visualization functions, especially for the training and validation loss. Since the training and validation loss 

of each epoch can intuitively show how well a model is trained, the visualization of the training and 

validation loss data is critical for the transportation AI platform. The details of the implementation 

technologies and tools are introduced in the platform development section. 

4. Methodology

The transportation AI platform can be used to address various transportation problems with the help of 

the novel deep learning models. Since this project mainly focuses on the traffic forecasting problems, this 

section mainly introduces the novel deep learning-based traffic forecasting algorithms. 
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4.1. Notions 

To define the traffic forecasting problems, several ideas are introduced in this subsection. Traffic states 

have many properties, including traffic speed, travel time, and traffic flow. In this section, the traffic speed 

is used as an example of the traffic states to introduce the deep learning algorithms used in this project. 

For a single location with traffic sensors, the collected traffic states can be represented by sequences and 

those sequences with 𝑛 historical time steps can be represented by a vector,  

𝑋𝑇 = [𝑥1, 𝑥2, … , 𝑥𝑡 , … , 𝑥𝑇] (1) 

For a long roadway or a network-wide traffic network with multiple traffic sensing areas, the traffic state 

data is normally represented by two-dimensional (2D) spatial-temporal data. A traffic network that 

contains 𝑃 sensing areas/locations, with the traffic state data at time 𝑇 using n historical time frames 

(steps) can be characterized as a matrix:  

𝑋𝑇
𝑃 = [

𝑥1

𝑥2

⋮
𝑥𝑃

] =

[

𝑥1
1 𝑥2

1 ⋯ 𝑥𝑇−1
1

𝑥1
2

⋮
𝑥2

2

⋮
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⋮
𝑥1
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𝑃 ⋯ 𝑥𝑇−1

𝑃

𝑥𝑇
1

𝑥𝑇
2

⋮
𝑥𝑇

𝑃]

 (2) 

where each element 𝑥𝑡
𝑝 represents the speed of the 𝑡-th time frame at the 𝑝-th location. To reflect the

temporal attributes of the speed data and simplify the expressions of the equations in the following 

subsections, the speed matrix is represented by a vector, 𝑋𝑇 = [𝑥1, 𝑥2, … , 𝑥𝑇] ∈ ℝ𝑃×𝑇 , in which each

element is a vector of the 𝑃 locations’ speed values.  

Traffic forecasting refers to predicting future traffic states, such as traffic speed, travel time, or volume, 

given previously observed traffic states from a roadway network. Specifically, the traffic forecasting 

problem aims to learn a function 𝐹(∙) to map 𝑇 time steps of historical traffic states, i.e. 𝑿𝑇
𝑃 , map to the

traffic states in the subsequent one or more time steps. In this project, the function attempts to forecast 

the traffic states in the subsequent one step, i.e. 𝑥𝑇+1, and the formulation of 𝐹(∙) is defined as  

𝐹([𝑥𝑇−𝑛 , 𝑥𝑇−(𝑛−1), … , 𝑥𝑇−2, 𝑥𝑇−1]) = 𝑥𝑇+1 (4)
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4.2. Recurrent Neural Network 

Figure 6 : Standard RNN architecture and an unfolded structure with T time steps1 

Recurrent neural network is a type of powerful deep neural network using an internal memory with loops 

to deal with sequence data. The architecture of RNNs is illustrated in Figure 6.The hidden layer in a RNN 

receives the input vector 𝑿𝑇
𝑃  and generates the output vector 𝒀𝑇. The unfolded structure of RNNs, shown

in the right part of Figure 6, illustrates the calculation process that, at each time iteration 𝑡, the hidden 

layer maintains a hidden state ℎ𝑡 and updates it based on the layer input 𝑥𝑡. The previous hidden state 

ℎ𝑡−1 is also used during the update process using the following equation: 

ℎ𝑡 = 𝜎ℎ(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (5) 

where 𝑊𝑥ℎ is the weight matrix from the input layer to the hidden layer, 𝑊ℎℎ is the weight matrix for the 

hidden states, and 𝑏ℎ is the bias vector of the hidden layer. The 𝜎ℎ is the activation function to generate 

the hidden state, which is normally a sigmoid function. Then, the network output at time 𝑡  can be 

characterized as: 

𝑦𝑡 = 𝜎𝑦(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦) (6) 

where 𝑊ℎ𝑦 is the weight matrix from the hidden layer to the output layer, 𝑏𝑦 is the bias vector of the 

output layer and 𝜎𝑦 is the activation function of the output layer. By applying Equation (5) and Equation 

(6), the parameters in the weight matrices and bias vectors is trained and updated iteratively via the back-

propagation (BP) method. In each time step 𝑡, the hidden layer will generate a value 𝑦𝑡 and the last output  

𝑦𝑇 is the desired predicted speed in the next time step, namely �̂�𝑇+1 = 𝑦𝑇.  

1 Image source [93] 
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Although RNNs exhibit superior capabilities for modeling non-linear sequence data, regular RNNs suffer 

from the vanishing or blowing-up gradient during the BP process. Thus, it is difficult for RNNs to capture 

long-term dependencies and RNNs is not very effective for learning sequence data with long time lags.  

4.3. Long Short-Term Memory Network 

Figure 7 : LSTM architecture. The pink circles are arithmetic operators and the colored 

rectangles are the gates in LSTM.2 

To handle the aforementioned gradient vanishing or blowing-up problems of RNNs, several sophisticated 

recurrent architectures, like LSTM architecture [72] and Gated Recurrent Unit (GRU) architecture [73], are 

proposed. The LSTM neural network works well on sequence-based tasks with long-term dependencies, 

but GRU, which is a simplified LSTM architecture, is widely used in the domain of machine translation and 

natural language processing. Although there have been a variety of typical LSTM variants proposed in 

recent years, a large-scale analysis of LSTM variants shows that the LSTM variants can significantly 

improve the performance upon the standard LSTM architecture[74]. Thus, the LSTM neural network is 

selected as an optional traffic prediction method in the transportation AI platform in this project and 

introduced in this section.  

The main difference between standard LSTM architecture and RNN architecture is in the hidden layer.  

The hidden layer of LSTM, i.e. the LSTM cell, is shown in Figure 7. Similar to RNNs, at time 𝑡, the LSTM cell 

takes 𝑥𝑡 as the input and generates ℎ𝑡 as the output. However, LSTM also maintains another hidden state, 

which is called cell state and denoted as 𝐶𝑡. Hence, the cell state 𝐶𝑡−1 at the previous time step 𝑡 − 1 is 

2 Image source [93] 
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also input to the LSTM cell, just like the previous hidden state ℎ𝑡−1. Due to the gated structure, LSTM can 

handle long-term dependencies to allow comprehensive information to go through the LSTM cell along 

loop structure. There are three gates in an LSTM cell, including an input gate, a forget gate, and an output 

gate. The gated structure, especially the forget gate, helps LSTM effectively deal with sequential data 

learning problems [74] in a scalable way. At time 𝑡, the input gate 𝑖𝑡, the forget gate 𝑓𝑡, and the output 

gate 𝑜𝑡, and the input cell state C̃t are represented by the colorful boxes in the LSTM cell in Figure 7 and 

calculated using the following equations: 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (7) 

𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (8) 

𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (9) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶𝑥𝑡+𝑈𝐶ℎ𝑡−1+𝑏𝐶) (10) 

where 𝑊𝑓, 𝑊𝑖, 𝑊𝑜, and 𝑊𝐶  are the weight matrices of the three gates and the input cell state in the LSTM 

cell and the 𝑈𝑓 , 𝑈𝑖, 𝑈𝑜, and 𝑈𝐶  are the weight matrices connecting the previous cell output state to the 

three gates and the input cell state. The 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜 , and  𝑏𝐶  are four bias vectors. The 𝜎𝑔  is the gate 

activation function, which is normally the sigmoid function, and the  tanh  is the hyperbolic tangent 

function. Based on the results of four above equations, at each time iteration 𝑡, the cell output state, 𝐶𝑡, 

and the layer output, ℎ𝑡, can be calculated as follows:  

𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑡⨀�̃�𝑡 (11) 

ℎ𝑡 = 𝑜𝑡⨀ tanh(𝐶𝑡) (12) 

Where ⨀ is an element-wise multiplication operator. The final output of an LSTM layer should be a vector 

of all the outputs, represented by 𝒀𝑇 = [ℎ1, … , ℎ𝑇]. If the traffic prediction problem targets to forecast 

the traffic state at the next time step �̂�𝑇+1,  only the last element of the output vector ℎ𝑇 the desired 

predicted value, i.e. �̂�𝑇+1 = ℎ𝑇 .  
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4.4. Gated Recurrent Unit Network 

Figure 8 : GRU structure.3 

A gated recurrent unit (GRU) was proposed by Cho et al. [75] to make each recurrent unit adaptively 

capture dependencies of different time scales. Similar to the LSTM cell, the GRU has gated units that 

modulate the flow of information inside the gated units. However, the GRU does not have separate 

memory cells. The structure of the GRU is illustrated in Figure 8. The GRU contains two gates, an update 

gate 𝑧𝑡 and a reset gate 𝑟𝑡, which can be described as following: 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1) (13) 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1) (14) 

where 𝑊𝑧 and 𝑊𝑟 are the input weight matrices and 𝑈𝑧  and 𝑈𝑟  are the hidden state weight matrices. A 

candidate hidden state ℎ̃𝑡 is defined to update the hidden state, which is described as follows: 

ℎ̃𝑡 = tanh(𝑊𝑥𝑡 + 𝑈(𝑟𝑡⨀ℎ𝑡−1)) (15) 

When 𝑟𝑡 is close to zero, i.e. the reset gate is off, the reset gate effectively makes the unit act as if it is 

reading the first symbol of an input sequence, allowing it to forget the previously computed state [73]. 

Then, the hidden state ℎ𝑡 is updated based on the update gate 𝑧𝑡, defined as follows: 

ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡ℎ̃𝑡 (16) 

3 Image Source: https://towardsdatascience.com/what-is-a-recurrent-nns-and-gated-recurrent-unit-grus-ea71d2a05a69 
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The hidden state ℎ𝑡 of the GRU at time 𝑡 is a linear interpolation between the previous hidden state ℎ𝑡−1 

and the candidate hidden state ℎ̃𝑡. Similar to LSTM, when taking the 𝑋𝑇 as input, the last output of GRU 

ℎ𝑇 is the desired predicted value.  

4.5. Graph Wavelet Gated Recurrent Network 

Figure 9 : Demonstration of the graph wavelet gated recurrent network. (a) Urban traffic 

network in downtown Seattle. (b) Speed information of roadway segments illustrated by 

various colors. (c) Graph structure converted from the traffic network. (d) Structure of a 

graph wavelet LSTM unit at time 𝒕, in which 𝒈 is the kernel function and 𝜳𝒔 is the graph 

wavelet matrix. 

To extract the spatial-temporal features from the traffic network, a more efficient way that considers the 

roadway network as a graph is proposed. The roadway network-based graph consists of vertices and 

edges representing sensing locations and connecting links, respectively. The graph can be denoted as 𝒢 =

(𝒱, ℰ, 𝐴) consisting of 𝑁 vertices 𝑣𝑗 ∈ 𝒱  and their linking edges (𝑣𝑖 , 𝑣𝑗) ∈ ℰ. The adjacency matrix 𝐴 ∈

ℝ𝑁×𝑁  describes the connectedness of vertices, in which element 𝐴𝑖,𝑗 = 𝐴𝑗,𝑖 = 1 if vertices 𝑖  and 𝑗  are

connected, otherwise 𝐴𝑖,𝑗 = 0 (𝐴𝑖,𝑖 = 0). The degree matrix of the graph 𝐷 ∈ ℝ𝑁×𝑁, which is a diagonal

matrix used to describe how many edges are attached to each vertex , is defined as 𝐷𝑖 ,𝑖 = ∑ 𝐴𝑖,𝑗
𝑁
𝑗=1 . The 

connectivity of the graph vertices can also be encoded by the graph Laplacian matrix ℒ, which is the basis 

of spectral graph analysis. The combinatorial form of the graph Laplacian matrix  can be defined as ℒ =

𝐷 − 𝐴 and the normalized form is defined as ℒ = 𝐼𝑁 − 𝐷−1 2⁄ 𝐴𝐷−1 2⁄ , where 𝐼𝑁 ∈ ℝ𝑁×𝑁 is the identity

matrix. Because ℒ  is a symmetric positive semidefinite matrix, the eigen-decomposition of ℒ  can be 

described as ℒ = 𝑈Λ𝑈𝑇 , in which 𝑈 ∈ ℝ𝑁×𝑁  is the eigenvector matrix. The columns 𝑈  is a set of 
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eigenvectors that  𝑈 = [𝑢0, 𝑢1, … , 𝑢𝑁−1] . The corresponding eigenvalues can be represented by 

𝜆0, 𝜆1, … , 𝜆𝑁−1  such that ℒ𝑢𝑖 = 𝜆𝑖𝑢𝑖 . Hence, the diagonal eigenvalue matrix is denoted as Λ =

diag(𝜆0, 𝜆1,… , 𝜆𝑁−1) ∈ ℝ𝑁×𝑁.

Based on the graph wavelet theory [76], the graph wavelet coefficients of all the vertices can be defined 

as 

Ψ𝑠 = 𝑈𝐺𝑠𝑈
𝑇 (17) 

where 𝑈  is the matrix formed by Laplacian eigenvectors and 𝐺𝑠 = diag(𝑔(𝑠𝜆0),… , 𝑔(𝑠𝜆𝑁−1))  is a 

diagonal kernel matrix. 𝑔(∙) is a kernel functions and 𝑠 is a scaling parameter that can be assigned as any 

positive real value.   

To capture the complex spatial-temporal dependencies in network-wide traffic data, we learn the traffic 

network as a graph and propose a graph wavelet gated recurrent (GWGR) neural network. The GWGR is 

similar to LSTM in that it has several gate units to filter out or add information to the cell state. However, 

the gate units in GWGR are defined based on the graph wavelet matrix Ψ𝑠 . The framework of the 

proposed model is shown in Figure 9 (d). Figure 9 (a) shows the traffic network. At time 𝑡, the roadway on 

the traffic network has different speed values, which is shown in Figure 9 (b). The speed values of all the 

roadways are converted into a vector 𝑥𝑡 as the input of the model. The roadway network structure is 

converted into a graph, as shown in Figure 9 (c). The graph wavelet coefficient is fixed for all time steps 

and it is designed based on the Laplacian matrix and a kernel function. 

In the proposed GWGR model, the graph wavelet coefficient matrix Ψ𝑠  is defined in Equation (17). The 

heat kernel 𝑔(𝑠𝜆𝑖) = 𝑒−𝑠𝜆𝑖  is adopted to generate the graph wavelet coefficient. Then, the Ψ𝑠
−1 is easily

obtained by replacing 𝑔(𝑠𝜆𝑖) with 𝑔(−𝑠𝜆𝑖)  [76]. The basic structure of the GWGR can be defined by the 

following equations:  

𝑓𝑡 = 𝜎𝑔(Ψ𝑠𝛬𝑓
𝑥Ψ𝑠

−1𝑥𝑡−1 + Ψ𝑠𝛬𝑓
ℎΨ𝑠

−1ℎ𝑡−1 + 𝑏𝑓) (18) 

𝑖𝑡 = 𝜎𝑔(Ψ𝑠𝛬𝑖
𝑥Ψ𝑠

−1𝑥𝑡−1 + Ψ𝑠𝛬𝑖
ℎΨ𝑠

−1ℎ𝑡−1 + 𝑏𝑖) (19) 

o𝑡 = 𝜎𝑔(Ψ𝑠𝛬𝑜
𝑥Ψ𝑠

−1𝑥𝑡−1 + Ψ𝑠𝛬𝑜
ℎΨ𝑠

−1ℎ𝑡−1 + 𝑏𝑜) (20) 

�̃�𝑡 = tanh(Ψ𝑠𝛬𝐶
𝑥Ψ𝑠

−1𝑥𝑡−1 + Ψ𝑠𝛬𝐶
ℎΨ𝑠

−1ℎ𝑡−1 + 𝑏𝐶) (21) 

where 𝑓𝑡, 𝑖𝑡, 𝑜𝑡  and �̃�𝑡 ∈ ℝ𝑁 are the outputs of the forget gate, input gate, output gate and the input

memory cell. Λ𝑓
𝑥, Λ𝑖

𝑥, Λ𝑜
𝑥, and Λ𝐶

𝑥 ∈ ℝ𝑁×𝑁 are diagonal weight matrices that filter the input 𝑥𝑡 to the three

gates and the memory cell with the help of graph wavelet matrix. Similarly, Λ𝑓
ℎ, Λ𝑖

ℎ, Λ𝑜
ℎ, and Λ𝐶

ℎ ∈ ℝ𝑁×𝑁are

also diagonal weight matrices for the hidden state ℎ𝑡 . 𝑏𝑓 ,  𝑏𝑖 ,  𝑏𝑜 , and  𝑏𝐶 ∈ ℝ𝑁  are four bias weight

vectors. The 𝜎𝑔 is the sigmoid activation function and tanh is the hyperbolic tangent function. Then, the 

cell state 𝐶𝑡 and the hidden state ℎ𝑡 at time 𝑡 are calculated as following 
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𝐶𝑡 = ft ⊙ 𝐶𝑡−1 + i𝑡 ⊙ �̃�𝑡 (22) 

ℎ𝑡 = o𝑡 ⊙ tanh(𝐶𝑡) (23) 

The ℎ𝑡 ∈ ℝ𝑁   is also the output of the GWGR unit at time 𝑡 . Given the input sequence 𝑋𝑇 =

[𝑥1, 𝑥1, … , 𝑥𝑇] ∈ ℝ𝑇×𝑁, the predicted value of the future step is �̂�𝑇+1 = ℎ𝑇 . If we only need to predict

traffic data for one future step, the loss function of the model can be defined as  

𝐿𝑜𝑠𝑠 = Loss(�̂�𝑇+1 − 𝑥𝑇+1) = Loss(ℎ𝑇 − 𝑥𝑇+1) (24) 

where Loss(∙)  is the loss function, normally adopting the mean square error function of the traffic 

prediction problem. 

5. Dataset

Figure 10 : (a) Urban traffic dataset covering the downtown Seattle urban corridors. (b) 

Freeway traffic data covering freeway system in Seattle area. 

5.1. Datasets for Traffic Prediction 

The artificial intelligence platform has the potential to provide datasets and deep learning-based models 

to multiple transportation related problems. In this project, the main target is to develop the prototype 

platform and implement the traffic prediction functionalities by providing network-wide traffic datasets 

and traffic prediction models. Hence, the datasets used in this project are the network-wide traffic 

datasets, including the inductive loop detector dataset and the National Performance Management 

Research Data Set (NPMRDS) dataset. The artificial intelligence platform is also scalable, with the potential 

to host more types of traffic datasets for fulfilling the traffic prediction problem and other problems. In 

this section, the two datasets for the traffic forecasting problem are introduced.  
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NPMRDS data: This dataset provided by WSDOT originates from the Federal Highway Administration 

(FHWA) ’s National Performance Management Research Data Set [77]. The NPMRDS data contains the 

average travel times on the National Highway System for use in its performance measures and 

management activities. This data set is also available to State Departments of Transportation (DOTs) and 

Metropolitan Planning Organizations to use for assisting their performance management activities. From 

2014 to 2016, the NPMRDS data provider is the Here Company. From 2017, the IRNIX travel time data is 

selected as the NPMRDS data for the USDOT and state DOTs to measure freeway roadway performance. 

In this project, the INRIX data in 2012 is used as one of the data sets. The INRIX data contains the travel 

times on roadway segments collected by and integrated from the probe vehicle data and traffic sensing 

data. 

This data set contains the speed data of roadway links in the Seattle downtown area, which is mostly 

collected by probe vehicles. In this area, the road network is very complex in that it contains principal 

arterials, minor arterials, one-way streets, freeways, ramps, express lanes, etc. This dataset covers the 

year 2012 and the time interval is 5-minute. The roadway network contains more than 1000 roadway 

links, but we select the largest connected roadway network containing 745 segments in the experiment, 

i.e. 𝑁 = 745, as shown in Figure 10 (a). For confidentiality reasons, this dataset is not allowed to be

published at this stage. 

Loop detector dataset [78]: The second data set is the loop detector data set which is collected by 

inductive loop detectors deployed on the freeway system. In this data set, the loop detector data covers 

four connected freeways in the Greater Seattle areas, including I-5, I-90, I-405, and SR-520, as shown in 

Figure 10 (b). The raw data contains three basic traffic flow characteristics, including traffic speed, volume, 

and density. The time interval in the raw data is 20 seconds. To solve the missing data problem, a flexible 

and robust data imputation method is applied [79]. After the dataset was comprehensively checked and 

cleaned [80], only the high-quality speed information from 2015 is used in this project. 323 traffic sensing 

locations are selected and integrated to form the loop detector data set. The time interval is integrated 

into 5-minute intervals. In this way, the loop detector speed data set is well-formatted without missing 

values. This dataset is published at https://doi.org/10.5281/zenodo.3258904, according to the guidelines 

in the C2SMART data management plan. 

5.2. Data Formatting 

For a specific task on the transportation AI platform, no matter which model and which dataset are used, 

the data input to the models should be in the same formats for establishing an automatic task executing 

process on the platform. Thus, although two datasets are used for the traffic prediction task, the two 

datasets are uniformly formatted to support the following modeling process. To demonstrate how the 

dataset are processed and formatted, the loop detector data is taken as an example in this section.  
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The loop detector data has 323 sensing locations/areas. The dataset covers the whole year 2015 and its 

time interval is 5 minutes. That means the dataset has 365 (days) * 24 (hours) * 12 (5-minutes) = 105120 

time intervals in total. Thus, the loop detector dataset can be represented by a 2D matrix. Figure 11 shows 

the left top corner of the 2D matrix with two axes, where the horizontal axis demonstrates the sensor 

locations and the vertical axis shows the timestamps. The values in the spatiotemporal matrix are the 

speed values and their unit is miles per hour (mph). 

Figure 11 : An example of the loop detector data matrix. 

Normally, the parameters in weight matrices in deep learning models are randomly initialized within the 

range of [-1, 1]. It is easier to train and test the deep learning models by normalizing the input data.  Thus, 

the speed values in the 2D matrix are normalized to the range of [0,1] and the normalization is conducted 

using the following equation: 

𝑋 =
𝑋 − 𝑚𝑖𝑛(𝑋)

max(𝑋) − 𝑚𝑖𝑛(𝑋)
(25) 

Based on the traffic forecasting problem formulated by Equation (4), the input data should be a sequence 

𝑋𝑇 and the label should be 𝑌𝑇. In this project, the default length of historical speed data 𝑇 is set as 10 and 

the 𝑌𝑇 = 𝑋𝑇+1. Then, the loop detector data set covering a period of a year with the 5-minute interval 

can generate 104120 – 𝑇 pairs of (𝑋𝑇 , 𝑌𝑇) data samples. 

Finally, to train and evaluate machine learning models, the data set is normally separated into three 

subsets, i.e. the training set, the validation set, and the testing set. In this project, all the samples extracted 

from the dataset are first randomized and then separated into three subsets according to the proportion 

of training: validation: testing = 7:2:1. 
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6. Platform Development

As described in Section 3, the transportation AI platform has three main components, the data warehouse, 

the web server, and the computation center. To build the platform, all three components need to be 

comprehensively designed and established using multiple technologies and tools. Meanwhile, timely and 

efficient data communication between the three components is also critical to the transportation AI 

platform. In this section, the key technologies and tools used in the platform development process are 

introduced.  

6.1. Key Technologies in Platform Components 

Figure 12 : Key technologies in the transportation AI platform architecture 

The transportation AI platform has three components, but the core of the platform is data. Firstly, the 

platform users need to manipulate the platform to select data and model to fulfill the desired tasks and 

check the visualized and tabularized result data via the user interfaces. Secondly, the computation center 

needs to acquire the user-specified model parameters and import the existing datasets to train and test 

the deep learning-based models. Thirdly, the data warehouse, which contains multiple types of data, 

needs to provide timely responses to the data requests from the web server and the computation center 

and store the newly generated data in an efficient way. Figure 12 briefly shows the key technologies that 

are used to develop the transportation AI platform and complete all the project requirements. 
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6.1.1. Web Server 

The Vaadin Framework is used to build the web server for the transportation AI platform. The web server 

is built using the Java programing language. When a public user attempts to access the transportation AI 

platform, the request will first be sent to the web server and a service/session will be built for the user. 

Then the user can continue to conduct other activities on the platform based on the response from the 

web server. Since the Vaadin framework provides multiple user-friendly interface plug-in tools to enhance 

the visualization performance, several Vaadin plug-in tools, such as Chart.js and Leaflet.js wrappers, are 

used in this project to visualize data sets and task results. 

• Vaadin Framework [81]: The web server is developed based on the Vaadin 8 framework, which

allows developers to build the entire web server and the user interface using only the Java

programing language. Normally, the user interface of a web site is build based on multiple

programing languages, including HTML, JavaScript, CSS, etc., but the Vaadin framework is a Java

UI framework and library that simplifies the web application development. The web development

code is written in Java and executed on the server’s JVM, while the UI is rendered as HTML5 in

the browser. The framework also automates all the communication between the browser and the

server, and it provides various web components to speed up the development of web

applications. Thus, the Vaadin framework is particularly suitable for prototype development.

Thus, in this project, the Vaadin framework is chosen as the base framework to develop the

transportation AI platform.

• Chart.js [82]: Chart.js is a JavaScript library that provides various plotting functions to generate

multiple types of charts, including bar chart, line chart, pie chart, etc. The Vaadin framework is

compatible with chart.js and provides a plug-in tool that can be integrated into the Vaadin

framework to plot charts. In this project, the charts used to visualize the training and testing

results are plotted by Chart.js.

• Leaflet.js [83]: Leaflet.js is the leading open-source JavaScript library for mobile-friendly

interactive maps. Leaflet.js has good usability and efficient performance. It is also very simple to

use to visualize geospatial data on maps. The Vaadin framework supports Leaflet.js based plug-in

tools. In this project, Leaflet.js based plug-in tools are used to visualize geospatial related data.

6.1.2. Data Warehouse 

The data warehouse mainly consists of different types of databases. As the user account information and 

the task information are the main data that need to be permanently stored, they are recorded by the SQL 

Server, which is a relational database. Other information, such as geospatial data in different data sets, is 

stored in databases with other specialties.  
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• SQL Server [84]: SQL Server is a relational database management system developed by Microsoft.

It supports the standard SQL (Structured Query Language) language and other advanced database

functions. Since the user and task information are relational data and SQL Server is a leading

relational database management system, it is used to host all the user information, task

information, and intermediate result data.

• PostgreSQL [85]: PostgreSQL is a powerful, open-source object-relational database system that is

similar to SQL Server. However, PostgreSQL has many unique features aimed to help developers

build applications, protect data integrity, and manage datasets. PostgreSQL is also extensible in

that it supports the PostGIS [86], a spatial database extender for PostgreSQL. PostGIS supports

the execution of location queries for geographic objects in SQL. In this project, the geospatial data

in different datasets are all stored in the PostgreSQL, which can be used for data visualization.

6.1.3. Computation Center 

The computation center behaves as the brain of the transportation AI platform. It is critical for the 

platform because it is the place where all the model training and testing are carried out. The computation 

center is built using the Python programing language. When a user of the platform has configured a task, 

including the goal, the dataset, the model, and the related parameters, the information about the new 

task is transmitted to the computation center. The computation center uses a Flask server to manage all 

the requests from the web server and control the task execution process. The data hosted in the 

computation center are processed by the Python packages, including Pandas and NumPy, and the deep 

learning models are developed and trained using the PyTorch package. 

• Flask [87]: Flask is a micro web framework written in Python. Flask supports extensions that can

add application features as if they were implemented in Flask itself. Extensions exist for object-

relational mappers, form validation, upload handling, and various open authentication

technologies. In this project, Flask acts as a server that runs all the time to receive real-time

requests from the web server and dispatches the requests to different threads to execute the

training or testing jobs on different GPUs.

• Pandas [88] & NumPy [89]: Pandas is an open source, BSD-licensed library providing high-

performance, easy-to-use data structures and data analysis tools for the Python programming

language. NumPy is the fundamental package for scientific computing with Python. In this project,

both Pandas and NumPy are used to process data sets before the data sets are input to the deep

learning models.

• PyTorch [90]: PyTorch is a Python machine learning package based on Torch. It has two main

features, i.e. tensor computation with strong GPU acceleration and automatic differentiation for

building and training neural networks. PyTorch and TensorFlow are the two most popular Python

deep learning packages that have been widely used in industry and academia. Because of its
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flexibility, PyTorch is used in this project to build all the traffic prediction models and conduct the 

training and testing tasks.  

6.2. Key Technologies between Platform Components 

To ensure the platform components can be efficiently and effectively connected, several technologies and 

tools are used to fulfill the data communication requirements. 

6.2.1. Communication between Web Server and Data Warehouse 

Since the transportation AI platform has multiple users, the user information needs to be easily stored 

and queried. Similarly, the platform’s task information also needs to be stored in an efficient way. Because 

the information structures of the users and tasks are fixed, – it is better to utilize a uniform method to 

ensure timely persistence of the data into the database. Thus, the Java Persistence API (JPA) is adopted 

to do the data persistence. JPA has a clear mapping mechanism between the Java class and a database 

table, which means the Java program does not need to write simple SQL query code. With the help of JPA, 

all the data communication between the web server and the data warehouse is fulfilled without writing 

SQL code. 

• Java Persistence API [91]: JPA is a Java specification for accessing, persisting, and managing data

between Java objects / classes and a relational database. Now, it is considered the standard

industry approach for Object to Relational Mapping (ORM) in the Java Industry.

6.2.2. Communication between Web Server and Computation Center 

Since the web server is programed using Java and the computation center is programed using Python, 

these two platform components need to have a bridge connecting them with each other and supporting 

the data commination. As mentioned in Section 6.1, the computation center uses a Flask server to monitor 

the request from the web server. Hence, sending data using the http request to the Flask server from the 

web server is good option. In this project, in the web server side, the task information configured by the 

users are encoded as a JSON object and sent to the Flask server. In the computation center side, the 

encoded information is decoded into a Python dictionary object for further processing. In this way, the 

data from the web server can be successfully sent to the computation center.  

However, in the opposite direction, the data from the computation center cannot be sent to the web 

server using the http request method. Considering that the intermediate and final results of each task are 

stored in the data warehouse, we solve the aforementioned problem with the help of the data warehouse, 

which means the web server query data is sent from the data warehouse instead of the computation 

center. 
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6.2.3. Communication between Data Warehouse and Computation Center 

The data generated during the training or testing process are stored in the data warehouse via the 

database connection. The computation center uses the pyodbc package to build the connection to the 

SQL Server database. The data storage SQL code is directly written in the python environment. 

6.3. Software and Hardware 

Given the key technologies and tools in the platform, the transportation AI platform is developed and 

tested on a tower computer with 32GB memory and two GeGorce GTX 1080 GPUs. The version of the 

software and tools are listed as following: 

• Database

▪ SQL Server 2016

▪ PostgreSQL 9.6

▪ PostGIS 2.5

• Web server

▪ Vaadin 8

▪ Chart.js: 1.3.0

▪ JPA (Spring boot): 1.5.3

• Python packages

▪ PyTorch: 1.0.1

▪ Pandas: 0.24.2

▪ NumPy: 1.16.2

▪ Flask: 1.0.2

▪ pyodbc: 4.0.26

6.4. Platform Demonstration 

Based on the designed architecture and the introduced key technologies, the core functions of the 

transportation AI platform are developed in this project. In this section, three main functions are 

demonstrated by showing the functions’ user interface (UI). It should be noted that the transportation AI 

platform is designed as a prototype and the UI will be adjusted or redesigned with the future development 

process. 
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6.4.1. Platform Dashboard 

The transportation AI platform has the ability to control the user identity and execute tasks launched by 

different users. Thus, a login UI is needed. Figure 13 shows the login UI of the platform. The user account 

is stored in the database. Only registered users with a username and a password can login to the platform. 

The platform also has a dashboard to display the current status of the platform, including the running 

tasks, the historical tasks, and the status of the computation center. Figure 14 shows the UI of the 

dashboard. The left section of the UI is the menu of the platform and the right section is the functional 

panel that displays the platform information. The top part of the panel shows the existing tasks launched 

by the users and the left bottom part of the panel shows the tasks of other users. The right bottom part 

of the panel shows the status of the GPUs in the computation center. The user can also check the status 

of the existing task by visualizing the training and validation loss, as shown in Figure 15. 

Figure 13 : Platform login interface 
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Figure 14 : Platform dashboard 

Figure 15 : Overview of the result of a training task on the platform dashboard 

6.4.2. Creating New Task 

The second tab of the platform menu is “New Task”, as shown in Figure 16. In this section, the process of 

creating a new task is demonstrated. Basically, the creation of a new task consists of three steps, including 

An Artificial Intelligence Platform for Network-wide Congestion Detection 
and Prediction Using Multi-Source Data 



34 

task goal selection, dataset selection, and model selection, which are displayed by Figure 16, Figure 17, 

and Figure 19, respectively.  

The task goal selection is the first step to determine the category of the task to be launched, such as traffic 

prediction and vehicle detection. After the task goal is selected, the data set selection step will be 

displayed on the functional panel of the platform and the data sets shown on the panel are the ones 

related to the selected task goal. Users can also check the detailed information for each dataset by clicking 

the “Info” button. Then, a description panel will be displayed, as shown in Figure 18. After the data set is 

selected and the “Next Step” button is clicked, the model selection panel will be displayed, as shown in 

Figure 19. The models are implemented using PyTorch and can be shared via the GitHub. The detailed 

information about the models, including the programing language, the library, and the brief introduction, 

is also displayed in the model selection table. By click on the table, the desired models can be selected. 

Then, if the “Start Training” button is clicked, the configuration parameters of the new task will be sent to 

the computation center to start the training process. 

Figure 16 : Creating a new task and select the task goal 

An Artificial Intelligence Platform for Network-wide Congestion Detection 
and Prediction Using Multi-Source Data 



35 

Figure 17 : Creating a new task and selecting the dataset 

Figure 18 : Brief introduction of the dataset 
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Figure 19 : Creating a new task and selecting a model 

6.4.3. Exhibit Existing Models 

The third section in the platform menu is the “Existing Model” tab. This section shows the existing models 

that have been trained by the user. Figure 20 shows the existing model panel with the detailed 

information of the trained model, including taskID, status, goal, dataset, model, and result. At the current 

stage, the result can show the training and validation loss of the trained model, as shown in Figure 21. 

The prediction accuracy and other model evaluation metrics will also be able to be displayed on the 

platform in the future. 
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Figure 20 : Display the existing models 

Figure 21 : Display the training and validation loss of the existing models 
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7. Traffic Prediction Task Performance Measurement

7.1. Performance Measurement Metrics 

7.1.1. Hyper-parameters 

For the traffic prediction task, several hyper-parameters need to be set before starting to train the model.  

The spatial dimension 𝑃 is set according to the selected datasets mentioned in Section 5. The temporal 

dimension of the input sequence is set as 10, i.e. 𝑇 = 10. As introduced in the data formatting section, 

the samples generated from a dataset are randomized and divided into training, validation, and testing 

sets with a ratio of 7:2:1. The batch size is set as 40 and the training loss is based on mean square error 

(MSE). Since the RMSProp [92] works well for RNNs, it is used as the gradient descent optimizer for the 

traffic prediction tasks. In RMSProp, the alpha (smoothing constant) is set as 0.99 and the epsilon (the 

term added to the denominator to improve numerical stability) is set as 10−8. In addition, during the 

training process, the early stopping strategy is applied to the validation set to avoid overfitting. The 

training task will stop if the validation error value (MSE) cannot drop 0.00001 within 10 patience steps. 

7.1.2. Evaluation metrics 

The performances of all the traffic prediction models can be evaluated by several metrics, including mean 

absolute error (MAE), mean absolute percentage error (MAPE), standard deviation (STD), and Root Mean 

Squared Error (RMSE).: 

𝑀𝐴𝐸 = 
1

𝑛
∑|𝑥𝑖 − �̂�𝑖|

𝑛

𝑖=1

(26) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑇 − �̂�𝑇

𝑌𝑇
| ∗ 100%

𝑛

𝑖=1
(27) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑇 − �̂�𝑇)2

𝑛

𝑖=1
(28) 

In this study, the samples of the input are traffic time series data with 10 time steps. The output/label is 

the next subsequent data of the input sequence. The performance of the proposed and the compared 

models are evaluated by three commonly used metrics in traffic forecasting, including 1) Mean Absolute 

Error (MAE), 2) Mean Absolute Percentage Error (MAPE), and 3) Root Mean Squared Error (RMSE).  
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7.2. Prediction Performance 

7.2.1. Prediction Accuracy 

In this section, the traffic prediction accuracy of different models applied on different datasets is 

presented. Table 1 shows the prediction accuracy on the loop detector dataset. The GRU does not perform 

as well as LSTM and GWGR. The GWGR method outperforms other models with all three metrics. The 

reason might be that GRU has no cell state to store historical information in its gate units compared to 

LSTM-based models, including GWGR. Both LSTM and GWGR work well and they have similar 

performance. However, compared with other models, the GWGR model is the state-of-the-art model that 

is implemented on the transportation AI platform because the GWGR can capture graph-based features 

while accommodating the physical specialties of traffic networks. 

Model MAE (mph) MAPE RMSE 

GRU 4.58 10.34% 0.37 

LSTM 2.70 6.83% 0.18 

GWGR 2.48 5.44% 0.11 

Table 1 : Traffic prediction accuracy on the loop detector dataset 

Table 2 shows the prediction accuracy on the NPMRDS dataset. The GWGR still performs best among the 

three models in terms of the three performance metrics. It should be noted that, for the NPMRDS data, 

during the nighttime or off-peak hours when there are no observed speed values on specific roads, the 

missing speed values are comprehensively imputed by the data provider. Thus, there are few variations 

at the non-peak hours in the NPMRDS data. Further, the speed values in the NPMRDS data are all integers. 

Therefore, the calculated errors of the NPMRDS data is less than that of the loop detector data and the 

evaluated performance on NPMRDS data is inflated.  

The transportation AI platform can provide the prediction accuracy on the user interface. This section only 

shows the model results of the traffic prediction-related models. In the future, when other types of tasks 

are implemented on the transportation AI platform, more model results will be presented and compared 

on the platform. 
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Model MAE (mph) MAPE RMSE 

GRU 2.12 8.59% 0.36 

LSTM 1.14 3.88% 0.09 

GWGR 0.93 2.67% 0.07 

Table 2 : Traffic prediction accuracy on the NPMRDS dataset 

7.2.2. Training and Validation Loss 

Figure 22 : Training and validation loss of the traffic prediction task using the LSTM model 

based on the loop detector dataset. 

The transportation AI platform also records the training and validation loss during the training process. 

The training and validation loss is critical to determine whether a model is well trained. If the model is 

correctly designed and the training parameters are properly set, both training loss and validation loss will 
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converge after a certain number of steps. Normally, the validation loss will be a little bit larger than the 

training loss since the back-propagation process is conducted only based on the training set. Figure 22 

and Figure 23 visualize the training and validation loss of the traffic prediction task tested on the loop 

detector dataset and the NPMRDS (INRIX) dataset, respectively. In the future, the transportation AI 

platform will provide more visualization functions, such as training time visualization and map-based 

prediction results visualization, to let the user quickly understand the performance of the tested models. 

Figure 23 : Training and validation loss of the traffic prediction task using the LSTM model 

based on the NPMRDS dataset. 
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8. Conclusion

The emergence of novel traffic sensing, data communication, and artificial intelligence technologies has 

greatly stimulated the growth of transportation data. To overcome the challenges brought on by immense 

transportation data, this project aims to utilize artificial intelligence technologies to derive knowledge 

from a huge volume of transportation data by building a transportation AI platform. Traffic forecasting 

involving high-dimensional spatiotemporal data is a good scenario to utilize novel deep learning models. 

In this project, the research team developed a prototype artificial intelligence platform for solving 

challenging transportation problems using large-volume high-dimensional transportation data and 

complex models. This AI platform is capable of providing standardized datasets and novel deep learning-

based models for solving specific pre-defined transportation problems. For a specific problem, the 

platform offers standardized training and testing procedures to assist in the evaluation of emerging novel 

methodologies. 

The contributions of this project can be summarized as follows: 

• A transportation AI platform incorporating large-volume high-dimensional transportation data and

complex models is developed for solving challenging transportation problems. This AI platform is

capable of providing standardized datasets and novel deep learning-based models for specific

problems.

• A novel architecture is designed for the transportation AI platform to enhance the efficiency of the

transportation data processing, management, and communication and increase the computational

power of the platform. The transportation AI platform consists of three main components, i.e. the

web server, data warehouse, and computation center. All three components are connected by using

novel data communication technologies.

• The web server uses a novel web-application framework to provide user-friendly interfaces and

support the interaction between users and the platform.

• A data storage and management schema is designed with the help of the data warehouse and the

computation center to manage multiple network-wide traffic data sets for supporting the traffic

prediction task and to simplify the whole training and testing process.

• Novel deep learning-based traffic prediction models and baseline model are developed and stored in

the computation center of the platform. A novel graph-based deep learning, i.e. the graph wavelet

gated recurrent (GWGR) network is proposed to capture the complicated topological structure of the

roadway network to improve the traffic prediction performance. Compared with baseline models,

including LSTM and GRU, the GWGR shows superior prediction performance.

• New visualization technologies are also incorporated in the transportation AI platform to help users

intuitively and efficiently use the platform and deploy novel methodologies.
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In summary, the planned tasks of the project are all completed. Further, the transportation AI platform 

has the potential to be a platform to host standard datasets and models to stimulate the development of 

novel deep learning models for transportation problems. In the future, the research team plans to develop 

a web page to demonstrate what kinds of problems the platform can deal with and introduce the existing 

datasets and models on the platform. In addition, the best performance of each model for each specific 

task will be displayed on the platform to reduce researchers’ duplicated modeling work and stimulate the 

emergence of novel technologies. 
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