Development and Tech Transfer of an Integrated Robust Traffic State and Parameter Estimation and Adaptive Ramp Metering Control System

Overview

Timely updated knowledge of traffic state and traffic flow parameters is essential for effective traffic control. Because of its simplicity, the Cell Transmission Model (CTM) has been widely used to serve as the underlying traffic flow model based on which a traffic state estimation scheme is built. A prominent feature of CTM is that for a given road cell, CTM switches between two modes: free-flow mode and congestion mode. For each mode, the traffic flow dynamics are linear in traffic density. As a result, most existing traffic state estimators that were derived from CTM switch among two linear working modes, and hence Kalman filter (KF) or ensemble Kalman filter (EnKF) can be applied. These existing estimators have assumed that traffic flow parameters including the free-flow speed and the critical density are known and time-invariant. However, in reality, these traffic flow parameters can be time-varying rather than fixed-valued.

Dr. Zhou and Dr. Ozbay found that, if the traffic flow parameters are time-varying and/or the knowledge of these parameters are biased, the performances of a traffic state estimator that has assumed them to be known and fixed-valued can be significantly downgraded. Moreover, only augmenting these parameters into the state vector and then resorting to nonlinear recursive estimation techniques such as extended Kalman filter (EKF) cannot solve the issue. This is because, under a CTM-based traffic estimator, the critical density is unobservable under free-flow conditions, and hence biased initial knowledge of the critical density can cause false switching of the working model of the estimator and distort the estimation afterward.

Research Objectives

The research objectives of this project are:

  • An automatic, residual-based mode switch supervisory observer that requires no prior knowledge of traffic flow parameters
  • On-line estimation of capacity-drop-proportion: Integrate the calibration of capacity-drop-proportion value into the real-time traffic state estimation process.
  • Modifications of CTM to accommodate speed adaption of bottleneck discharge flow.
  • Fusion of measurements from loop detectors and connected vehicles to improve TSE quality.
  • Adaptive ramp metering based on the improved TSE method and integrate the improved CTM-EKF estimator with ramp metering control.

Related Media

Personnel

Kaan Ozbay

Director, C2SMART
Professor, NYU

Kaan Ozbay is the Principal Investigator on this project.

Yue Zhou

Affiliated Researcher, NYU

Yue Zhou is a Co-Principal Investigator on this project.

Deliverables

Datasets

Details