Development of Advanced Weigh-In-Motion (A-WIM) System for Effective Enforcement of Overweight Trucks to Reduce their Socioeconomic Impact on Major Highways

The research team will first establish a test bed for the development of the advanced WIM (A-WIM) system by collaborating with local transportation agencies for the selection of the test bed site near a static weighing station. Then, it will develop a set of calibration procedures to guarantee that the level of accuracy is reached and preserved over time. These procedures will include, but are not limited to, the effect of temperature, humidity, and pavement type.

Research on Concrete Applications for Sustainable Transportation (RE-CAST)

This project has many parts, and the NYU team is currently working with Rutgers on the RE-CAST 2D subproject. This subproject aims to test the bend strength of reinforced concrete that is repaired and strengthened using the four techniques: External Prestressing, Fiber-Reinforced Ferrocement Composite, Fiber-Reinforced Self Consolidating Concrete, and Fiber-Reinforced.

Development of Autonomous Enforcement Approach using Advanced Weigh-In-Motion (A-WIM) System to Minimize Impact of Overweight Trucks on Infrastructure

In this study, the team investigated the effect of overweight trucks on the pavement and bridge damage from a national perspective to develop the most efficient enforcement approach to minimize infrastructure damage. The enforcement approach will include the continuation of the development of the A-WIM system and expanding its deployment.

Integration and Operation of an Advanced Weigh-in-Motion (A-WIM) System for Autonomous Enforcement of Overweight Trucks

Trucks have been an integral part of the freight movement network in distributing goods and services to various communities; however, a percentage of these trucks are often overloaded beyond legal load limits. A more practical and efficient OW enforcement scheme would be needed to discourage the trucking industry from overloading their fleets.